THE TE₀₁ WAVE EXCITATION IN A CIRCULAR WAVEGUIDE USING HIGHER-ORDER MODES OF AN OPEN RESONATOR

DOI: https://doi.org/10.15407/rpra28.03.243

I. K. Kuzmichov, O. E. Кogut, B. I. Muzychishin, O. Yu. Popkov, O. B. Senkevych

Abstract


Subject and Purpose. Peculiarities of the TE01 wave excitation in a circular waveguide located in the center of the flat mirror of a hemispherical open resonator (OR) are studied using the OR oscillation type TEМ30q and the OR degenerate oscillation type TEM*11q  in the extremely high frequency (EHF) range.

Methods and Methodology. The efficiency of the circular-waveguide TE01 wave excitation using the TEМ30q and TEM*11q types of OR oscillations is evaluated through the factor of antenna surface utilization. Amplitude distributions of the OR oscillation fields were measured by the trial body method.

Results. It has been established that the efficiency, η, of the TE01 wave excitation in the circular waveguide is not high when it is by use of the OR oscillation TEМ30q. Things are different when the TE01 wave is excited with the inner ring of the TEM*11q degenerate oscillation field whereby the η value shoots up to 95.5%, the circular waveguide section radius being a = 0.993w0, where w0 is the radius of the field spot of the main oscillation type TEМ00q on the OR flat mirror. The experimental studies have confirmed that the TE01 wave excitation in the waveguide has high efficiency. The attachment of the circular oversized waveguide section worsens the OR loss by no more than 0.9 dB. The presence of the circular waveguide makes the TEМ3012 oscillation type transform into the TEM*1112 degenerate oscillation.

Conclusions. The considered OR can be used as a storage resonator in the construction of electromagnetic pulse compressors in the EHF range, since the resonant system loss increases insignificantly, and the circular waveguide itself is oversized. It is easy to implement an interference switch in such a waveguide.

Keywords: open resonator, circular waveguide, excitation efficiency, trial body, oscillation quality factor

Manuscript submitted 27.04.2023

 Radio phys. radio astron. 2023, 28(3): 243-256

 REFERENCES

    1. Didenko, A.N., Zelentsov, V.I., Stein, Yu.G., Yushkov, Yu.G., 1972. Generation of high-power nanosecond microwave pulses.
Radiotekhnika i elektronika, 17(7), pp. 1545—1547 (in Russian).
    2. Alvarez, R., Birx, D., Byrne, D., Lauer, E., and Scalapino, D., 1981. Application of microwave energy compression to particle accelerators. Part. accel., 11(3), pp. 125—130.
    3. Didenko, A.N., Yushkov, Yu.G., 1984. Powerful microwave pulses of nanosecond duration. Moscow, USSR: Energoatomizdat Publ. (in Russian).
    4. Devyatkov, N.D., Didenko, A.N., Zamyatina, L.Ya., Razin, S.V., and Yushkov, Yu.G., 1980. Formation of powerful pulses during the accumulation of microwave energy in the resonator. Radiotekhnika i elektronika, 25(6), pp. 1227—1230 (in Russian).
    5. Alvarez, R.A., Byrne, D.P., and Johnson, R.M., 1986. Prepulse suppression in pulse-compression cavities. Rev. Sci. Instrum., 57(10), pp. 2475—2480. DOI: https://doi.org/10.1063/1.1139096
    6. Danilov, Yu.Yu., Kuzikov, S.V., Pavelyev, V.G., Koshurinov, Yu.I., and Shchegol’kov, D.Yu., 2005. Compressor of linearly frequency- modulated pulses based on a ring three-mirror resonator. Zh. Tekh. Fiz., 75(4), pp. 131—133 (in Russian). DOI: https://doi.org/10.1134/1.1901797
    7. Kuzmichev, I.K., Melezhik, P.N., and Poyedinchuk, A.Ye., 2006. An open rezonator for physical studies. Int. J. Infrared Millim. Waves, 27(6), pp. 857—869. DOI:
https://doi.org/10.1007/s10762-006-9122-7
    8. Popkov, A.Yu., and Kuzmichev, I.K., 2009. Open resonator with fragment of circular waveguide: model computation and experiment. Radio Phys. Radio Astron., 14(4), pp. 425—432 (in Russian).
    9. Kuzmichev, I.K., Popkov, A.Yu., and Rud, L.A., 2012. Excitation of TE11 and TE01 waves in a coaxial waveguide included in an open resonator. Part I. Excitation efficiency. Physical Bases of Instrumentation, 1(3), pp. 92—100 (in Russian). DOI: https://doi.org/10.25210/jfop-1203-092100
    10. Menzel, R., 2007. Photonics: Linear and Nonlinear Interactions of Laser Light and Matter. 2nd ed. Berlin, Germany: Springer- Verlag Berlin and Heidelberg GmbH & Co. KG. ISBN: 978-3-540-23160-8.
    11. Auston, D.H., Primich, R.I., and Hayami, R.A., 1964. Further considerations of the use of Fabry—Perot resonators in microwave plasma diagnostics. In: Quasi-Optics, Symposium on Quasi-Optics Proceedings. Brooklyn, NY: Polytechnic Press, pp. 273—304.
    12. Kogelnik, H., 1964. Coupling and convertion coefficients for optical modes. In: Quasi-Optics, Symposium on Quasi-Optics Proceedings. Brooklyn, NY: Polytechnic Press, pp. 333—347.
    13. Kyun, R., 1967. Microwave Antennas. Transl. from German and ed. by M.P. Dolukhanov. Leningrad, USSR: Sudostroyeniye Publ. (in Russian).
    14. Кuzmichev,  I.К.,  2009.  Quasi-Optical  Resonance  Systems  with  Internal  Inhomogeneities.  Telecommunications  and  Radio Engineering, 68(4), pp. 299—317. DOI: https://doi.org/10.1615/TelecomRadEng.v68.i4.30
    15. Мaitland, А., and Dunn, M.H., 1969. Laser Physics. North-Holland Publishing Company. Amsterdam—London. ISBN-13: 978- 0720401530.
    16. Tarasov, L.V., 1981. Physics of processes in coherent optical radiation generators. Moscow, USSR: Radio and Svyaz’ Publ. (in Russian).
    17. Valitov, R.A. ed., Dyubko, S.F., Kamyshan, V.V., 1969. Submillimeter Wave Technique. Мoscow, USSR: Sovetskoe radio Publ. (in Russian).
    18. Kuzmichev, I.K., Muzychishin, B.I., and Popkov, A.Y., 2021. Summation of Powers in Open Resonator with Slotted Coupling Elements. Adv. Electromagn., 10(3), pp. 7—13. DOI: https://doi.org/10.7716/aem.v10i3.1721
    19. Zhonghai Yang, Chongwen Lin, and Yingwei Zho, 1985. A Method for Measurement of Q-Factor at Millimeter Wavelength. In: 10th Int. Conf. Infrared and Millimeter Waves. Conf. Dig. Lake Buena Vista, Fla, 9—13 Dec. 1985. New York, N.Y., 1985, p. 350— 351. DOI: 10.1109/IRMM.1985.9126718
    20. Lebedev, I.V., 1970. Techniques and microwave devices. Vol. 1. Microwave technique. Moscow, USSR: Vysshaya Shkola Publ. (in Russian).
    21. Kuzmichev, I.K., 2002. The probe diameter choosing for the investigation of the field distribution in the small aperture open resonator. Telecommunication and Radio Engineering, 58(7—8), pp. 59—63. DOI: https://doi.org/10.1615/TelecomRadEng.v58.i7-8.50

 


Keywords


open resonator; circular waveguide; excitation efficiency; trial body; oscillation quality factor

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)