OBSERVATIONS OF DECAMETER CARBON RADIO RECOMBINATION LINES IN SEVERAL GALACTIC DIRECTIONS Part 2. ANALYSIS OF PHYSICAL CONDITIONS IN DIFFUSE CII REGIONS

DOI: https://doi.org/10.15407/rpra28.04.275

Y. V. Vasylkivskyi, O. O. Konovalenko, S. V. Stepkin

Abstract


 Subject and Purpose. In Part 2 of the current paper, we seek to analyze the observational results of decameter carbon radio recombination lines (RRLs) detected near the frequency 26 MHz through the UTR-2 radio telescope towards the S140 emission nebula and the GSH 139-03-69 super shell. These lines have proven themselves as a highly effective tool for cold, rarefied interstellar medium (ISM) diagnostics. The aim is to determine an association of line-forming regions (CII regions) with other ISM components and study physical conditions (electron temperature Te and electron density Ne) in these regions.

Methods and Methodology. By iterative comparison of detected and modeled integral intensities of decameter carbon RRLs, we determine physical state ranges where recorded experimental data best fit the model values for various combinations of Te,Ne, and path lengths s.

Results.It has been found that the characteristics of the detected decameter carbon RRLs are consistent with the higher-frequency data for both the S140 line of sight and other Galactic plane directions, including the GSH 139-03-69 direction. Ranges of physical conditions where recorded data and model values are in the best agreement have been determined, being Te = 50÷ 100 K, Ne = 0.01 cm–3, and s= 10 pc — for the S140 nebula direction and its vicinity and, also, Te = 50÷ 100 K, Ne =0.01 cm–3, and s = 5÷ 7 pc for the GSH 139-03-69 super shell direction.

Conclusions. The obtained results indicate that the detected decameter carbon RRLs originate from CII regions associated with clouds of diffuse neutral hydrogen HI in the Galactic plane. The lines are seen against a background Galactic radio emission whose brightness temperature increases as frequency decreases.

 Keywords: electron density; electron temperature; interstellar medium; ionized carbon; medium model; radio recombination lines; CII region

 Manuscript submitted  03.03.2023

Radio phys. radio astron. 2023, 28(4): 275-286

REFERENCES

1. Vasylkivskyi, Y.V., Konovalenko, O.O., Stepkin, S.V., 2023. Observations of decameter carbon radio recombination lines toward several Galactic directions. Part 1. Experimental study. Radio Phys. Radio Astron., 28(3), pp. 201—211. DOI: https://doi.org/10.15407/rpra28.03.201

2. Konovalenko, A.A., and Sodin, L.G., 1981. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature, 294, pp. 135—136. DOI: https://doi.org/10.1038/294135a0

3. Gordon, M.A., and Sorochenko, R.L., 2009. Radio Recombination Lines. Their Physics and Astronomical Applications. Ser. Astrophysics and Space Science Library. Vol. 282. New York: Springer Science + Business Media. DOI: https://doi.org/10.1007/978-94-010-0261-5

4. Konovalenko, A.A., and Stepkin, S.V., 2005. Radio Recombination Lines. In: L.I. Gurvits, S. Frey, and S. Rawlings, eds., Radio Astronomy from Karl Jansky to Microjansky. Budapest, Hungary: EAS Publ., 15, pp. 271—295. DOI: https://doi.org/10.1051/eas:2005158

5. Stepkin, S.V., Konovalenko, O.O., Vasylkivskyi, Y.V., Mukha, D.V., 2021. Interstellar medium and decameter radio spectroscopy. Radio Phys. Radio Astron., 26(4), pp. 314—325. DOI: https://doi.org/10.15407/rpra26.04.314

6. Walmsley, C.M., and Watson, W.D., 1982. The influence of dielectronic-like recombination at low temperatures on the interpretation of interstellar, radio recombination lines of carbon. Astrophys. J., 260, pp. 317—325. DOI: https://doi.org/10.1086/160256

7. Knapp, G.R., Brown, R.L., Kuiper, T.B.H., Kaakr, R.K., 1976. Carbon recombination line observations of the sharpless 140 region. Astrophys. J., 204(1), pp. 781—783. DOI: https://doi.org/10.1086/154225

8. Smirnov, G.T., Sorochenko, R.L., Walmsley, C.M., 1995. The S 140/L 1204 complex: radio recombination lines of hydrogen, carbon and sulphur. Astron. Astrophys., 300, pp. 923—932.

9. Golynkin, A.A., Konovalenko, A.A., 1991. Radio recombination lines of highly excited carbon near DR21 and S140. Sov. Astron. Lett., 16(1), pp. 7—10.

10. Smirnov, G.T., Sorochenko, R.L., Kitaev, V.V., 1992. Search for 42 MHz recombination lines toward S140. Sov. Astron. Lett., 18, pp. 192—194.

11. Vasylkivskyi, Y.V., Stepkin, S.V., Konovalenko, O.O., 2023. Studies of low-frequency carbon radio recombination lines in medium toward S140 nebula. Contr. Astr. Obs. Skalnate Pleso, 53(1), pp. 17—27. DOI: https://doi.org/10.31577/caosp.2023.53.1.17

12. Kalberla, P.M.W., Burton, W.B., Hartman, Dap, Arnal, E.M., Bajaja, E., Morras, R., Pöppel, W.G.L., 2005. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI: final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys., 440(2), pp. 775—782. DOI: https://doi.org/10.1051/0004-6361:20041864

13. Knee, L.B.G., Brunt, C.M., 2001. A massive cloud of cold atomic hydrogen in the outer Galaxy. Nature, 412, pp. 308—310. DOI: https://doi.org/10.1038/35085519

14. Ershov, A.A., Ilyashov, Y.P., Lekht, E.E., Smirnov, G.T., Solodkov, V.T., Sorochenko, R.L., 1984. Low-frequency (42, 57, 84 MHz) excited-carbon lines toward Cassiopeia A. Sov. Astron. Lett., 10, pp. 348—353.

15. Konovalenko, A.A., 1984. Observations of carbon recombination lines at decametric wavelengths in the direction Cassiopeia A. Sov. Astron. Lett., 10, pp. 353—356.

16. Ershov, A.A., Lekht, E.E., Smirnov, G.T., Sorochenko, R.L., 1987. Highly excited-carbon level population and nature of the low-frequency radio line forming regions toward Cassiopeia A. Sov. Astron. Lett., 13, pp. 8—11.

17. Payne, H.E., Anantharamaiah, K.R., Erickson, W.C., 1989. Stimulated emission of carbon recombination lines from cold clouds in the direction of Cassiopeia A. Astrophys. J., 341, pp. 890—900. DOI: https://doi.org/10.1086/167547

18. Payne, H.E., Anantharamaiah, K.R., Erickson, W.C., 1994. High Rydberg state carbon recombination lines toward Cassiopeia A: Physical conditions and a new class of models. Astrophys. J., 430, pp. 690—705. DOI: https://doi.org/10.1086/174441

19. Sorochenko, R.L., 1996. Radio recombination lines as a tool for investigation of molecular clouds. Astron. Astrophys. Trans., 11(3), pp. 199—214. DOI: https://doi.org/10.1080/10556799608205467

20. Kantharia, N.G., Anantharamaiah, K.R., and Payne, H.E., 1998. Carbon Recombination Lines between 34.5 and 770 MHz toward Cassiopeia A. Astrophys. J., 506(2), pp. 758—772. DOI: https://doi.org/10.1086/306266

21. Oonk, J.B.R., van Weeren, R.J., Salas, P., Salgado, F., Morabito, L.K., Toribio, M.C., Tielens, A.G.G.M., Röttgering, H.J.A., 2016. Carbon and hydrogen radio recombination lines from the cold clouds towards Cassiopeia A. Mon. Not. R. Astron. Soc., 465(1), pp. 1066—1088. DOI: https://doi.org/10.1093/mnras/stw2818

22. Salas, P., Oonk, J.B.R., van Weeren, R.J., Salgado, F., Morabito, L.K., Toribio, M.C., Emig, K., Röttgering, H.J.A., and Tielens, A.G.G.M., 2017. LOFAR observations of decameter carbon radio recombination lines towards Cassiopeia A. Mon. Not. R. Astron. Soc., 467(2), pp. 2274—2287. DOI: https://doi.org/10.1093/mnras/stx239

23. Erickson, W.C., McConnell, D., Anantharamaiah, K.R., 1995. Low-frequency carbon recombination lines in the central regions of the Galaxy. Astrophys. J., 454, pp. 125—133. DOI: https://doi.org/10.1086/176471

24. Kantharia, N.G., Anantharamaiah, K.R., 2001. Carbon recombination lines from the Galactic plane at 34.5 & 328 MHz. J. Astrophys. Astron., 22, pp. 51—80. DOI: https://doi.org/10.1007/BF02933590

25. Salgado, F., Morabito, L.K., Oonk, J.B.R., Salas, P., Toribio, M.C., Röttgering, H.J.A., and Tielens, A.G.G.M., 2017. Low-frequency carbon radio recombination lines. I. Calculation of departure coefficients. Astrophys. J., 837(2), id. 141. DOI: https://doi.org/10.3847/1538-4357/aa5d9e


 


Keywords


electron density; electron temperature; interstellar medium; ionized carbon; medium model; radio recombination lines; CII region

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)