LATITUDINAL FEATURES OF TROPOSPHERIC RESPONSE TO 27-DAY CYCLIC VARIATIONS OF SOLAR ACTIVITY
Abstract
Subject and Purpose. The troposphere is a natural channel for the propagation of meter- and shorter wavelength radio waves. Studying the impact of solar activity (SA) on the condition of the troposphere is important for improving the accuracy of weather forecasts and understanding the state of the tropospheric radio channel. The present paper has been aimed at identifying and comprehending the solar-tropospheric interactions resulting from the 27-day cycles of solar activity.
Methods and Methodology.The study was conducted through twenty 27-day cycles of solar activity, over an interval of latitudes between 0 and 80°N, and at four east longitudes, specifically 30, 180, 240 and 330°E. The atmospheric data used were quoted from the NOAA Physical Sciences Laboratory list (https://psl.noaa.gov /data/timeseries/daily/) and concerned sea level pressure, temperature in the troposphere at the height level with a 1000 hPa pressure, stratospheric temperature at the height corresponding to 50 hPa, and zonal wind speed.
Results. Reliable estimates have been obtained for the atmospheric parameters varying over 27-day cycles, that revealed maximum amplitudes at middle and high latitudes,: in particular the sea level pressure up to 12 hPa, temperature in the troposphere up to 5.3 K, and up to 3.5 K in the stratosphere . The relative amplitudes (about 1.3%) of these variations correlate with the 27-day changes in the solar UV radiation of a 205 nm wavelength. Anti-phase changes have been observed between the troposphere and stratosphere temperatures over the continents in the Western and Eastern hemispheres, as well as anti-phase changes in pressure over the continents
and the oceans. The change in the sign of temperature variation with height occurs near the tropopause, being accompanied by a ~ 1 km change in the tropopause height. At the latitude of 60°N, the 27-day changes in the zonal wind speed in the stratosphere may reach tens per cent. A persistent solar effect is observable not in winter time alone, but in summer as well, while of a smaller amplitude.
Conclusions. Owing to stratosphere-troposphere interaction effects, the troposphere demonstrates a high sensitivity to 27-day variations of the solar UV radiation. The main properties of the 27-day variations of atmospheric parameters testify to the important
role of planetary and meteorological- scale Rossby waves in the realization of solar influence.
Keywords: solar activity; 27-day cycle; stratosphere-troposphere interactions
Manuscript submitted 25.03.2024
Radio phys. radio astron. 2024, 29(4): 293-307
REFERENCES
1. Dikty, S., Weber, M., von Savigny, C., Sonkaew, T., Rozanov, A., Burrows, J.P., 2010. Modulations of the 27 day solar rotation signal in stratospheric ozone from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (2003—
2008). J. Geophys. Res., 115(D1). DOI: https://doi.org/10.1029/2009JD012379
2. Fioletov, V.E., 2009. Estimating the 27‐day and 11‐year solar cycle variations in tropical upper stratospheric ozone. J. Geophys. Res., 114(D2). DOI: https://doi.org/10.1029/2008JD010499
3. Gruzdev, A.N., Schmidt, H., Brasseur, G.P., 2009. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three‐dimensional chemistry‐climate model. Atmos. Chem. Phys., 8, pp. 1113—1158. DOI: https://doi.org/10.5194/acpd-8-1113-2008
4. Hood, L.L., Zhou, S., 1998. Stratospheric effects of 27-day solar ultraviolet variations: An analysis of UARS MLS ozone and temperature data. J. Geophys. Res., 103(D3), pp. 3629—3638. DOI: https://doi.org/10.1029/97JD02849
5. Kubin, A., Langematz, U., Brühl, C., 2011. Chemistry climate model simulations of the effect of the 27 day solar rotational cycle on ozone. J. Geophys. Res., 116(D15). DOI: https://doi.org/10.1029/2011JD015665
6. Ruzmaikin, A., Santee, M.L., Schwartz, M.J., Froidevaux, L., Pickett, H.M., 2007. The 27‐day variations in stratospheric ozone and temperature: New MLS data. Geophys. Res. Lett., 34(2). DOI: https://doi.org/10.1029/2006GL028419
7. Burns, G.B., Tinsley, B.A., French, W.J.R., Troshichev, O.A., Frank-Kamenetsky, A.V., 2008. Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J. Geophys. Res. Atmos., 113(D15). DOI: https://doi.org/10.1029/2007JD009618
8. Edmonds, I., 2013. The correlation of ~ 27 day period solar activity and daily maximum temperature in continental Australia. 2013. arXiv:1307.0921 [astro-ph.SR]. DOI: 10.48550/arXiv.1307.0921
9. Hood, L.L., 2003. Thermal response of the tropical tropopause region to solar ultraviolet variations. Geophys. Res. Lett., 30(23). DOI: https://doi.org/10.1029/2003GL018364
10. Takahashi, Y., Okazaki, Y., Sato, M., Miyahara, H. Sakanoi, K., Hong, P.K., Hoshino, N., 2010. 27-day variation in cloud amount in the Western pacific warm pool region and relationship to the solar cycle. Atmos. Chem. Phys., 10, pp. 1577—1584. DOI: https://doi.org/10.5194/acp-10-1577-2010
11. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W., 2010. Solar influences on climate. Rev. Geophys., 48(4). DOI: https://doi.org/10.1029/2009RG000282
12. Protsenko, G.D., 2007. Meteorology and climatology. Kyiv, Dragomanov Ukrainian State University Publ. (in Ukrainian).
13. Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11). DOI: https://doi.org/10.1029/2006JC003798
14. Evtushevsky, O.M., Kravchenko, V.O., Hood, L.L, Milinevsky, G.P., 2015. Teleconnection between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time lags. Clim. Dyn., 44, pp. 1841—1855. DOI: https://doi.org/10.1007/s00382-014-2375-2
15. Wallace, J.M., Gutzler, D.S., 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev., 109, pp. 784—812. DOI: https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
16. Wirth, V., Riemer, M., Chang, E.K., Martius, O., 2018. Rossby Wave Packets on the Midlatitude Waveguide. Mon. Weather Rev., 146(7), pp. 1965—2001. DOI: https://doi.org/10.1175/MWR-D-16-0483.1
17. Shepherd, T.G., 2002. Issues in stratosphere–troposphere coupling. J. Meteorol. Soc. Japan., 80(4B), pp. 769—792.DOI: https://doi.org/10.2151/jmsj.80.769
18. Charney, J.G., Drazin, P.G., 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, pp. 83—109. DOI: https://doi.org/10.1029/JZ066i001p00083
19. Canziani, P.O., Legnani, W.E., 2003. Tropospheric–stratospheric coupling: Extratropical synoptic systems in the lower stratosphere. Part A. Q. J. R. Meteorolog. Soc., 129(592), pp. 2315—2329. DOI: https://doi.org/10.1256/qj.01.109
20. Colucci, S.J., 2010. Stratospheric influences on tropospheric weather systems. J. Atmos. Sci., 67(2), pp. 324—344. DOI:https://doi.org/10.1175/2009JAS3148.1
21. Baldwin, M.P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.H., Charlton-Perez, A.J., Domeisen, D.I.V., Garfinkel, C.I., Garny, H., Gerber, E.P., Hegglin, M.I., Langematz, U., Pedatella, N.M., 2021. Sudden stratospheric warmings. Rev. Geophys., 59(1).
DOI: https://doi.org/10.1029/2020RG000708
22. Butchart, N., 2014. The Brewer-Dobson circulation. Rev. Geophys., 52, pp. 157—184. DOI: https://doi.org/10.1002/2013RG000448
23. Dunn-Sigouin, E., Shaw, T.A., 2015. Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res., 120(4), pp. 1374—1391. DOI: https://doi.org/10.1002/2014JD022116
24. Kidston, J., Scaife, A.A., Hardiman, S.C., Mitchell, D.M., Butchart, N., Baldwin, M.P., Gray, L.J., 2015. Stratospheric infl uence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8(6), pp. 433—440. DOI: https://doi.org/10.1038/ngeo2424
25. Milinevsky, G.P., Grytsai, A.V., Evtushevsky, O.M., Klekociuk, A.R., 2022. Contributions to understanding climate interactions: stratospheric ozone. Kyiv: Akademperiodyka Publ. DOI: https://doi.org/10.15407/academperiodyka.252.471
26. Mitchell, D.M., Gray, L.J., Anstey, J., Baldwin, M.P., Charlton-Perez, A.J., 2013. The infl uence of stratospheric vortex displacements and splits on surface climate. J. Clim., 26(8), pp. 2668—2682. DOI: https://doi.org/10.1175/JCLI-D-12-00030.1
27. Shaw, T.A., Perlwitz, J., Weiner, O., 2014. Troposphere–stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res., 119(10), pp. 5864—5880. DOI: https://doi.org/10.1002/2013JD021191
28. Kodera, K., Kuroda, Y., 2002. Dynamical response to the solar cycle. J. Geopys. Res., 107(D24). DOI: https://doi.org/10.1029/2002JD002224
29. Williams, G.P., 2006. Circulation sensitivity to tropopause height. J. Atmos. Sci., 63(7), pp. 1954—1961. DOI: https://doi.org/10.1175/JAS3762.1
30. Kashkin, V.B., 2014. Internal gravity waves in the troposphere. Atmos. Oceanic Opt., 27, pp. 1—9. DOI: https://doi.org/10.1134/S1024856014010059
31. Daocheng, Yu, Xiaohua, Xu, Jia, Luo, Juan, Li., 2019. On the relationship between gravity waves and tropopause height and temperature over the globe revealed by COSMIC radio occultation measurements. Atmosphere, 10(75). DOI: https://doi.org/10.3390/atmos10020075
32. Boljka, L., Birner, T., 2020. Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling. Weather Clim. Dyn., 1, pp. 555—575. DOI: https://doi.org/10.5194/wcd-1-555-2020
33. Boljka, L., Birner, T., 2022. Potential impact of tropopause sharpness on the structure and strength of the general circulation. NPJ Clim. Atmos. Sci., 5(98). DOI: https://doi.org/10.1038/s41612-022-00319-6
34. Karen, L., Smith, R., Scott, K., 2016. The role of planetary waves in the tropospheric jet response to stratospheric cooling. Geophys. Res. Lett., 43(6), pp. 2904—2911. DOI: https://doi.org/10.1002/2016GL067849
35. Putz, C., Schlutow, M., Klein, R., Bense, V., Spichtinger, P., 2018. Reflection and transmission of gravity waves at non-uniform stratification layers. arXiv: 1812.08779v1[physics.ao-ph]. DOI: 10.48550/arXiv.1812.08779
36. Stone, K.A., Solomon, S., Kinnison, D.E., Baggett, C.F., Barnes, E.A., 2019. Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geoph. Res. Atmos., 124(12). DOI: https://doi.org/10.1029/2018JD029626
37. Yang, S.-S., Pan, C.-J., Das, U., 2021. Investigating the spatio-temporal distribution of gravity wave potential energy over the equatorial region using the ERA5 reanalysis data. Atmosphere, 12(311). DOI: https://doi.org/10.3390/atmos12030311
38. Song, Y., Robinson, W.A., 2004. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61(14), pp. 1711—1725. DOI: https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2
39. Lee, J.N., Hameed, S., Shindell, D.T., 2008. Northern annular mode in summer and its relation to solar activity variations in the GISS Model E. J. Atmos. Sol. Terr. Phys., 70(5), pp. 730—741. DOI: https://doi.org/10.1016/j.jastp.2007.10.012
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)