NUMERICAL MODELING OF CHARACTERISTICS AND PARAMETERS OF A NOISE RADAR SENSOR FOR EARTH’S SURFACE MAPPING
Abstract
Subject and Purpose. The work presents numerical modeling results on the characteristics and parameters of a Noise Radar Sensor (NRS) during remote sensing of terrestrial surfaces. The radiometric (passive) mode and the mode with "backlighting" (active) of the mapping scene are considered. Radiometric signals of surfaces at wavelengths of 3.37 and 1.34 mm are used along with echo signals from the same surfaces under their backlighting (or illuminating) with ultra-weak-power quasicontinuous noise-like signals at a wavelength of 1.53 mm. The focus is on developing a numerical modeling technique to calculate the potential input characteristics of the NRS and compare them with the output parameters of the imagery.
Methods and Methodology. The obtained output parameters and characteristics of terrestrial surface imagery are analyzed and synthesized for potential NRS embodiments. The airborne NRS carrier is an AN-14 "Bdzhilka" aircraft. Attention is given to atmospheric conditions and limited time of accumulating useful low-contrast radiometric "grass–concrete" signals. Approximate effective specific grass and concrete scattering surfaces are sought under backlighting conditions.
Results. The numerical modeling results regarding the characteristics and parameters of the NRS embodiment have been optimized for two operating modes. The range, coverage sector of surfaces, imagery bands, resolution capability, number of Doppler filters at the NRS outputs, and accuracy features have been established in radiometric mode and during the backlighting of mapping surfaces.
Conclusions. Numerical modeling has been conducted based on technologically feasible characteristics of the NRS. The key parameters and features of the NRS in radiometric mode and under conditions of mapping scene backlighting have been optimized. We have analyzed the NRS input characteristics in connection with the output parameters of the imagery. The obtained results will allow us to predict the quality of imagery during remote sensing.
Keywords: radiometric contrast, grass, concrete, range, pixels, Doppler frequency correction, resolution, root mean square deviation of errors
Manuscript submitted 11.01.2025
Radio phys. radio astron. 2025, 30(2): 077-088
REFERENCES
1. Sokolov, A.V. ed., 2003. Issues of advanced radar. Collective monograph. M.: Radio Engineering Publ.
2. Dulevich, V.E. ed., 1978. Theoretical foundations of radiolocation. 2nd ed. revised and enlarged. M.: Sov. Radio Publ.
3. Karavaev, V.V., Sazonov, V.V., 1987. Statistical theory of passive radiolocation systems. M.: Radio and Communication Publ.
4. Shilo, S.A., Sidorenko, Yu.B., 2009. Method for forming radiometric images and antennas for its implementation. Ukraine. Pat. 85932 (in Ukrainian).
5. Owda, A., Salmon, N., Rezqui, N., Shylo, S., 2017. Millimetre Wave Radiometers for Medical Diagnostics of Human Skin. In: 2017 IEEE Sensors: proc. Glasgow, UK, 29 Oct. — 1 Nov. 2017, pp. 768—770. IEEE. DOI: 10.1109/ICSENS.2017.8234132
6. Kudryashov, V.E., 2018. A Bistatic Radiometry System for Object Mapping, Telecommunicati ons and Radio Engineering.
Telecommunications and Radio Engineering, 77(20), pp. 1813—1826. DOI: 10.1615/TelecomRadEng.v77.i20.40
7. Kudryashov, V.E., Litovchenko, D.M., Filippenkov, O.V., 2020. Multi-channel reception system for radiometry signals. In: 2020 IEEE Ukrainian Microwave Week (UkrMW): proc. Kharkiv, Ukraine, 21—23 Sept. 2020, pp. 318—322. IEEE. DOI: 10.1109/UkrMW49653.2020.9252699
8. Radio Regulations. Articles. Geneva: Switzerland, 2016. 441 p.
9. Kudriashov, V., Garbar, A.Y., Lukin, K.A., Maslikowski, L., Samczynski, P., Kulpa, K., 2015. Fusion of Images Generated by Radiometric and Active Noise SAR. Cybern. Inf. Technol., 15(7), pp. 58—66. DOI: 10.1515/cait-2015-0089
10. Lukin, K.A., & Kudriashov, V.V., 2013. Fusion of synthetic aperture radiometer and noise waveform SAR images. In: 2013 IX Int. Conf. Antenna Theory and Techniques (ICATT): proc. Odessa, Ukraine, 16—20 Sept. 2013, pp. 549—551. IEEE. DOI: 10.1109/ICATT.2013.6650843
11. Kudriashov, V., 2015. A modified maximum likelihood method for estimation of mutual delay and power of noise signals by bistatic radiometer. Comptes rendus de l’Académie bulgare des Sciences, 68(5), pp. 631—640.
12. Skolnik, M. ed., 1978. Handbook of Radiolocation. Vol. 4. Radar Stations and Systems. M.: Sov. Radio Publ.
13. Tikhonov, V.I. ed., 1980. Statistical Radio Engineering: Examples and Problems. M.: Sov. Radio Publ.
14. Shirman, Ya.D. ed., 1970. Theoretical Foundations of Radiolocation. M.: Sov. Radio Publ.
15. Shirman, Ya.D. ed., 2007. Radioelectronic Systems: Basics of Design and Theory. Handbook. 2nd revised and enlarged ed. M.: Radio Engineering Publ.
16. Skolnik, M. ed., 1976. Handbook of Radiolocation. Vol. 1. Fundamentals of Radiolocation. M.: Sov. Radio Publ.
17. Eravant. Low Noise Amplifiers. Available from: https://www.eravant.com/products/amplifiers/low-noise-amplifiers
18. Bronstein, I.N., Semendyaev, K.A., 1981. Handbook of Mathematics for Engineers and University Students. M.: Science Publ.
19. Almazov, V.B., 1974. Methods of Passive Radar. Kharkiv: VIRTA Publ.
20. Chernyak, V.S., 1993. Multi-position radiolocation. M.: Radio and Communication Publ.
21. Kudriashov, V., Martin-Neira, M., Roelofs, F., Falcke, H., Brinkerink, C., Baryshev, A., Hogerheijde, M., Young, A., Pour- shaghaghi, H., Klein-Wolt, M., Moscibrodzka, M., Davelaar, J., Barat, I., Duesmann, B., Valenta, V., Perdigues Armengol, J.M., De Wilde, D., Martin Iglesias, P., Alagha, N., Van Der Vorst, M., 2021. An Event Horizon Imager (EHI) Mission Concept Utilizing Medium Earth Orbit Sub-Mm Interferometry. Chinese Journal of Space Science (CJSS), 41(2), pp. 211—233. DOI: 10.11728/cjss2021.02.211
22. Skolnik, M.I., 1981. Introduction to Radar Systems. Second Ed. Singapore: McGraw-Hill Book Co.
Keywords

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)