EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
Abstract
Subject and Purpose. The paper presents research into the effect of silver nanoparticles on the efficiency of excitation energy transfer in donor-acceptor mixtures of organic dyes. These mixtures make active media in luminescent solar concentrators and luminescent transformers. Our concern is to explore the possibility of boosting the excitation energy transfer in these media by adding plasmonic nanoparticles. The discussion centers on our experimental studies involving two donor-acceptor dye combinations: Coumarin 314 with Rhodamine 6G, and 3-Methoxybenzanthrone with Sulforhodamine 101, while varying acceptor dye concentrations.
Methods and Methodology. The spectral-luminescent characteristics of aqueous-ethanolic solutions of both individual dyes and their mixtures are measured with and without silver nanoparticles synthesized by the citrate reduction method. Based on the spectral measurements, the energy transfer parameters for each donor-acceptor pair are calculated, and excitation en- ergy transfer efficiencies in the samples with and without nanoparticles are assessed.
Results. It has been revealed that adding nanoparticles to the mixture improves the excitation energy transfer efficiency between donor-acceptor molecules, which is equivalent to increasing the critical transfer radius. It has been found that the factor causing the growth of the critical radius is independent of the concentration of acceptor dye molecules. So, the efficiency of excitation energy transfer in the examined nanocomposites is governed, first of all, by the interaction between donor molecules and plasmons of nanoparticles.
Conclusions. Adding plasmonic nanoparticles to multicomponent dye-based active media enhances the efficiency of excitation energy transfer between molecules of donor-acceptor pairs. This enhancement occurs because localized surface plasmons provide an additional channel of energy transfer. The main factor to improve this energy transfer efficiency is the donor-plasmon interaction. Consequently, the development of nanocomposite media can be optimized through appropriate combinations of dyes and nanoparticles.
Keywords: silver nanoparticles, plasmon resonance, dye molecules, donor-acceptor mixtures, energy transfer, plasmon-coupled resonance energy transfer
Manuscript submitted 13.02.2025
Radio phys. radio astron. 2025, 30(3): 193-201
REFERENCES
1. Van Sark, W.G.J.H.M., Barnham, K.W.J., Slooff, L.H., Chatten, A.J., Büchtemann, A., Meyer, A., McCormack, S.J., Koole, R., Farrell, D.J., Bose, R., Bende, E., Burgers, A.R., Budel, T., Quilitz, Ja., Kennedy, M., Meyer, T., De Mello Donegá, C., Mei- jerink, A., Vanmaekelbergh, D., 2008. Luminescent Solar Concentrators — A review of recent results. Opt. Express, 16(26), pp. 21773—21792. DOI: 10.1364/oe.16.021773
2. Kulish, M.R., Kostylyov, V.P., Sachenko, A.V., Sokolovskyi, I.O., Khomenko, D.V., Shkrebtii, A.I. 2016. Luminescent con- verter of solar light into electrical energy. Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO), 19(3), pp. 229—247. DOI: 10.15407/spqeo19.03.229
3. Jo, K., Kim, H.J. 2021. Review of the Fundamental Principles and Performances on Lminescent Solar Concentrators. Appl. Sci. Converg. Technol., 30(1), pp. 14—20. DOI: 10.5757/asct.2021.30.1.14
4. Sibinski, M. 2023. Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Applications. Materials, 16, pp. 3112—3132. DOI: 10.3390/ma16083112
5. Bailey, S.T., Lokey, G.E., Hanes, M.S., Shearer, J.D.M., McLafferty, J.B., Beaumont, G.T., Baseler,T., Layhue, J.M., Broussard, D.R., Zhang, Y.Z., Wittmershaus, B.P., 2006. Optimized excitation energy transfer in a three-dye luminescent solar concen- trator. Sol. Energy Mater. Sol. Cells, 91(1), pp. 67—75. DOI: 10.1016/j.solmat.2006.07.011
6. Balaban, B., Doshay, S., Osborn, M., Rodriguez, Y., and Carter, S.A., 2014. The role of FRET in solar concentrator efficiency and color tunability. J. Luminesc., 146, pp. 256—262. DOI: 10.1016/j.jlumin.2013.09.049
7. Delgado-Sanchez, J.-M., Lillo-Bravo, I., Menéndez-Velázquez, A., 2021. Enhanced luminescent solar concentrator effi- ciency by Föster resonance energy transfer in a tunable six-dye absorber. Int. J. Energy Res., 45, pp. 11294—11304. DOI: 10.1002/er.653
8. Zhang, B., Lyu, G., Kelly, E.A., Evans, R.C., 2022. Förster Resonance Energy Transfer in Luminescent Solar Concentrators.
Adv. Sci., 9(23). DOI: 10.1002/advs.202201160
9. Castelletto, S., Boretti, A., 2023. Luminescence solar concentrators: a technology update. Nano Energy, 109. 108269. DOI: 10.1016/j.nanoen.2023.108269
10. Föster, T., 1948. Intermolecular energy migration and fluorescence. Ann. Phys., 2, pp. 55—75.
11. Lakowicz, J.R., 2006. Principles of fluorescence spectroscopy. Springer eBooks. DOI: 10.1007/978-0-387-46312-4
12. Reil, F., Hohenester, U., Krenn J. R., Leitne, A., 2008. Förster-Type Resonant Energy Transfer Influenced by Metal Nanopar- ticles. Nano Lett., 8(12), pp. 4128—4133. DOI: 10.1021/nl801480m
13. Bobbara, S.R., 2011. Energy transfer between molecules in the vicinity of metal nanoparticle. dissertation. PhD thesis ed. Queen’s University. Available at: https://central.bac-lac.gc.ca/.item?id=TC-OKQ-6593&op=pdf&app=Library
14. Zhang, X., Marocico, C.A., Lunz, M., Gerard, V.A., Gun’Ko, Y.K., Lesnyak, V., Gaponik, N., Susha, A.S., Rogach, A.L., and Bradley, A.L., 2014. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8(2), pp. 1273—1283. DOI: 10.1021/nn406530m
15. Steele, J.M., Ramnarace, C.M., Farner, W.R., 2017. Surface plasmon enhanced FRET. In: Optical Sensing, Imaging, and Pho- ton Counting: Nanostructured Devices and Applications 2017: Proc. Vol. 10353. Event: SPIE Nanoscience + Engineering, 2017, San Diego, California, United States. DOI: 10.1117/12.2274218
16. Ding, W., Hsu, L.Y., Heaps, C.W., and Schatz, G.C., 2018. Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. J. Phys. Chem. C., 122(39), pp. 22650—22659. DOI: 10.1021/acs. jpcc.8b07210
17. Kaur, A., Kaur, P., Ahuja, S., 2020. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods. 12, pp. 5532—5550. DOI: 10.1039/d0ay01961e
18. He, Z., Li, F., Zuo, P., Tian, H., 2023. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials, 16(8), 3083. DOI: 10.3390/ma16083083
19. Krasovitsky, B.M., Bolotin, B.M., 1976. Organic luminophores. L.: Chemistry Publ.
20. Nickolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nickolaev, K.S., 2019. Solid active media for tunable lasers based on dye- doped polyurethanes. Telecommunications and Radio Engineering, 78(8), pp. 725—741. DOI: 10.1615/TelecomRadEng.v78. i8.80
21. Nikolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nikolaev, K.S., 2018. Dependence of fluorescent characteristics of nanocom- posites on the basis of dye molecules and silver nanoparticles on the optical density of components. Telecommunications and Radio Engineering, 77(19), pp. 1675—1683. DOI: 10.1615/TelecomRadEng.v77.i19.10
22. Andreev, A.N., Lazarenko, A.G., 2013. Measurement of particle dimensions in colloidal solutions using the correlation spectroscopy technique. Telecommunications and Radio Engineering, 73(18), pp. 1671—1678. DOI: 10.1615/TelecomRa- dEng.v73.i18.60
23. Geddes, C.D., Lakowicz, J.R., 2002. Metal-Enhanced Fluorescence. J. Fluoresc., 12(2), pp. 121—129. DOI: 10.1023/ A:101687570957
Keywords

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)