A FIBER-OPTIC HYDROACOUSTIC PRESSURE SENSOR BASED ON INTERMODE INTERFERENCE
Abstract
Subject and Purpose. The use of the two-mode operation of an optical fi ber in fiber-optic sensors simplifies the interferometerdesign and enhances the reliability of sensing.
Methods and Methodology. The mechanism behind the appearance of intermode phase shifts of the light modes Lp01 and Lp11 under various types of optical fiber deformation is examined. A mathematical model of a hydroacoustic sensor based on a two-mode optical fiber is proposed and experimentally validated. The intermode phase-acoustic sensitivity of the optical fiber to hydroacoustic pressure is evaluated for the Lp01 and Lp11 modes. A segment of a multimode optical fiber is fusion-spliced to the output of the two-mode fiber. This method creates conditions for the interference of the Lp01 and Lp11 modes and increases the modulation depth of the light flux at its output.
Results. The heart of a hydroacoustic pressure-sensitive element in this research is an optical fiber with a core diameter of 18 μm and a numerical aperture of 0.0592. With the use of a 0.86 μm laser, propagation conditions are created for the two modes, Lp01 and Lp11 . The alteration of the mode content when a mode mixer is installed at the input of the optical fiber has been studied. For the fiber-optic sensor with a signal-to-noise ratio of 1:1 at the photodetector output and a frequency bandwidth of 100 Hz, the minimum detectable acoustic pressure inside the sensitive element is 55 Pa, and the intermode phase-acoustic sensitivity is 5.2*10-9 Pa.
Conclusions. It has been shown that the two-mode operation of the optical fiber enables the development of interferometric fiber-optic sensors that are sensitive to mechanical deformations of the fiber. These sensors are characterized by a simpler design compared to traditional fiber-optic sensors based on Mach–Zehnder interferometers. It has been demonstratez that using a single-mode optical fiber with a reduced optical radiation wavelength ensures propagation conditions for the two lowest-order modes of the fiber.
Keywords: optical fiber, fiber-optic sensor, intermode interference, phase-acoustic sensitivity, pressure
Manuscript submitted 25.07.2025
Radio phys. radio astron. 2025, 30(4): 276-284
REFERENCES
1. Culshaw, B., Kersey, A., 2008. Fiber-optic sensing: A historical perspective. J. Lightwave Technol., 26(9), pp. 1064—1078. DOI: 10.1109/JLT.0082.921915
2. Miliou, A., 2021. In-fiber interferometric-based sensors: overview and recent advances. Photonics, 8(7), 265. DOI: 10.3390/photonics8070265
3. Li, X., Chen, N., Zhou, X., Gong, P., Wang, S., Zhang, Y., Zhao, Y., 2021. A review of specialty fiber biosensors based on interferometer configuration. J. Biophotonics, 14(6), e202100068. DOI: 10.1002/jbio.202100068
4. Wu, Q., Qu, Y., Liu, J., Yuan, J., Wan, S.-P., Wu, T., He, X.-D., Liu, B., Liu, D., Ma, Y., Semenova, Y., Wang, P., Xin, X., Farrell, G., 2021. Singlemode-Multimode-Singlemode fiber structures for sensing applications — A review. IEEE Sens. J.,
21(11), pp. 12734—12751. DOI: 10.1109/JSEN.2020.3039912
5. Sadeque, M.S.B., Chowdhury, H.K., Rafique, M., Durmuş, M.A., Ahmed, M.K., Hasan, M.M., Erbaş, A., Sarpkaya, İ., Inci, F., Ordu, M., 2023. Hydrogel-integrated optical fiber sensors and their applications: A comprehensive review. J. Mater.
Chem. C, 11, pp. 9383—9424. DOI: 10.1039/D3TC01206A
6. Morshed, A.H.E., 2024. Multimode interference sensors for static and dynamic monitoring. In: S.W. Harun (ed.) Optical technologies for advancing communication, sensing, and computing systems. Intech Open. DOI: 10.5772/intechopen.1008340
7. Zhuang, F., Li, Y., Guo, T., Yang, Q., Luo, Y., Wang, J., Wang, Sh., 2025. Review on in-situ marine monitoring using physical and chemical optical fiber sensors. Photonic Sens., 15, P. 250230. DOI: 10.1007/s13320-024-0731-3
8. Vali, V., Shorthill, R.W., 1976. Fiber ring interferometer. Appl. Opt., 15(5), pp. 1099—1100. DOI: 10.1364/AO.15.001099
9. Giallorenzi, T.G., Bucaro, J.A., Dandridge, A., Sigel, G.H., Cole, J.H., Rashleigh, S.C., Priest, R.G., 1982. Optical fiber sensor technology. IEEE Trans. Microw. Theory Tech., 30(4), pp. 472—511. DOI: 10.1109/JQE.1982.1071566
10. Engholm, M., Hammarling, K., Andersson, H., Sandberg, M., Nilsson, H.E., 2019. A bio-compatible fiber optic pH sensor based on a thin core interferometric technique. Photonics, 6(1), 11. DOI: 10.3390/photonics6010011
11. Liu, Z., Li, G., Zhang, A., Zhou, G., Huang, X., 2021. Ultra-sensitive optical fiber sensor based on intermodal interference and temperature calibration for trace detection of copper (II) ions. Opt. Express, 29(15), pp. 22992—23005. DOI: 10.1364/
OE.434687
12. Noman, A.A., Dash, J.N., Cheng, X., Tam, H.Y., Yu, C., 2022. Mach-Zehnder interferometer based fiber-optic nitrate sensor. Opt. Express, 30(21), pp. 38966—38974. DOI: 10.1364/OE.468944
13. Yang, M., Zhu, Y., Ren, J., 2024. Hourglass-shaped fiber-optic Mach-Zehnder interferometer for pressure sensing. Opt. Fiber Technol., 84, 103746. DOI: 10.1016/j.yofte.2024.103746
14. Wang, W., Pei, Y., Ye, L., Song, K., 2020. High-sensitivity cuboid interferometric fiber-optic hydrophone based on planar rectangular fi lm sensing. Sensors, 20(22), 6422. DOI: 10.3390/s20226422
15. Dass, S., Jha, R., 2021. Underwater low acoustic frequency detection based on in-line Mach–Zehnder interferometer. J. Opt. Soc. Am. B: Opt. Phys., 38(2), pp. 570—575. DOI: 10.1364/JOSAB.410440
16. May-Arrioja, D.A., Ruiz-Perez, V.I., Bustos-Terrones, Y., Basurto-Pensado, M.A., 2016. Fiber optic pressure sensor using a conformal polymer on multimode interference device. IEEE Sens. J., 16(7), pp. 1956—1961. DOI: 10.1109/
JSEN.2015.2510360
17. Li, Y., Jiang, Y., Tang, N., Wang, G., Tao, J., Zhang, G., Ge, Q., Zhang, N., Wu, X., 2023. Fiber optic temperature and strain sensor using dual Mach–Zehnder interferometers. Appl. Opt., 62(8), pp. 1977—1983. DOI: 10.1364/AO.480414
18. Yi, D., Liu, F., Geng, Y., Li, X., Hong, X., 2021. High-sensitivity and large-range fiber optic temperature sensor based on PDMS-coated Mach-Zehnder interferometer combined with FBG. Opt. Express, 29(12), pp. 18624—18633. DOI: 10.1364/
OE.428384
19. Bian, C., Cheng, Y., Zhu, W., Tong, R., Hu, M., Gang, T., 2020. A novel optical fiber Mach-Zehnder interferometer based on the calcium alginate hydrogel film for humidity sensing. IEEE Sens. J., 20(11), pp. 5759—5765. DOI: 10.1109/
JSEN.2020.2973290
20. Bhardwaj, V., Singh, V.K., 2016. Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sens. Actuators A Phys., 244, pp. 30—34. DOI: 10.1016/j.sna.2016.04.008
21. Unger, H.-G., 1977. Planar optical waveguides and fi bers. Oxford engineering science series. Vol. 5. New York : Clarendon Press.
Keywords

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)