NETWORK OF INTERNET-CONTROLLED HF RECEIVERS FOR IONOSPHERIC RESEARCHES

DOI: https://doi.org/10.15407/rpra19.04.324

A. V. Koloskov, Y. M. Yampolski, A. V. Zalizovski, V. G. Galushko, A. S. Kascheev, C. La Hoz, A. Brekke, V. S. Beley, M. T. Rietveld

Abstract


A network of HF receivers intended for multi-position monitoring of the ionosphere is described. At present, it includes nine observation sites located at high, middle and low latitudes in both hemispheres of the Earth. The basic element of the network is a small-size receiving and measuring units designed at the Institute of Radio Astronomy (IRA) of the National Academy of Sciences of Ukraine (NASU) on the basis of a personal computer equipped with commercial digital receiving modules. Software packages developed by the authors make it possible to remotely control the facilities via the Internet network. The received emissions are HF signals from special transmitters and broadcast radio stations. These are processed using Doppler and pulse selection algorithms. In the Internet-controlled mode, the observation results are transferred to the main server in real time to be automatically processed and visualized at the website of the IRA NASU’s Department of Radiophysics of Geospace. Several examples of using the observation results obtained with the HF receiver network for diagnostics of dynamic processes in the near-Earth plasma are presented. The advantages of the multiposition mode of observations are discussed. The possibility of upgrading the HF facilities to provide measuring angles of arrival of signals is considered.

Key words: Internet control, long-distance radio-wave propagation, Doppler translation, impulse selection, ionospheric turbulence, Brillouin dispersion

Manuscript submitted 04.06.2014

Radio phys. radio astron. 2014, 19(4): 324-335

REFERENCES

1. BENNETT, J. A., 1976. Doppler shift formulas for waves in the ionosphere. Radio Sci., vol. 11, no. 7, pp. 621–627. DOI: https://doi.org/10.1029/RS011i007p00621

2. DAVIES, K., 1990. Ionospheric Radio. London, UK: Peter Peregrinus Ltd. 580 p. DOI: https://doi.org/10.1049/PBEW031E

3. AFRAIMOVICH, E. L., 1982. Interference methods of radio sounding of the ionosphere. Moscow, USSR: Nauka (in Russian).

4. ZALIZOVSKY, A. V., GALUSHKO, V. G., KASHCHEEV, A. S., KOLOSCOV, A.V., YAMPOLSKY, Y. M., EGOROV, I. B. and POPOV, A. V., 2007. Doppler selection of HF radio signals on the super-long-distance routes. Geomagnetism and Aeronomy, vol. 47, no. 5, pp. 674–684.

5. KASCHEEV, S. B., KOLOSKOV, A. V., ZALIZOVSKI, A. V., GALUSHKO, V. G., PIKULIK, I. I. , YAMPOLSKI, Y. M., KURKIN, V. I., LITOVKIN, G. I., ORLOV, A. I. and PETKO, P. V., 2009. Experimental Investigation of Spectral Characteristics of HF Signals at Longand Ultra-Long-Range Radio Paths. Radio Phys. Radio Astron., vol. 14, no. 1, pp. 12-25 (in Rissian).

6. BELEY, V. S., GALUSHKO, V. G. and YAMPOLSKI, Y. M., 1995. Traveling ionospheric disturbances diagnostics using HF signal trajectory parameter variations. Radio Sci., vol. 30, no. 6. pp. 1739–1752. DOI: https://doi.org/10.1029/95RS01992

7. GALUSHKO, V. G., KASHCHEYEV, A. S., KASHCHEYEV, S. B., KOLOSKOV, A. V., PIKULIK, I. I., YAMPOLSKI, Y. M., LITVINOV, V. A., MILINEVSKY, G. P. and RAKUSA-SUSZCZEWSKI, S., 2007. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys., vol. 69, no. 4–5, pp. 403–410. DOI: 10.1016/j. jastp.2006.05.010

8. KASCHEEV, S. B., ZALIZOVSKI, A. V., KOLOSKOV, A. V., GALUSHKO, V. G., PIKULIK, I. I., YAMPOLSKI, YU. M., KURKIN, V. I., LITOVKIN, G. I., ORLOV, A. I., 2009. Frequency Variations of HF Signals at Long-Range Radio Paths during a Solar Eclipse. Radio Phys. Radio Astron., vol. 14, no. 4, pp. 353–366 (in Russian).

9. YAMPOLSKI, Y. M., BLIOKH, P. V., BELEY, V. S., GALUSHKO, V. G. and KASCHEEV, S. B., 1997. Non-linear interaction between Schumann resonances and HF Signals. J. Atmos. Sol.-Terr. Phys., vol. 59, no. 3, pp. 335–342. DOI: 10.1016/S1364-6826(96) 00036-3

10. YAMPOLSKI, Y. M., BELEY, V. S., KOLOSKOV, A. V., KASCHEEV, S. B., SOMOV, G. V., HYSELL, D. L., ISHAM, B. and KELLEY, M. C., 1997. Bistatic HF radar diagnostics induced field-aligned irregularities. J. Geophys. Res., vol. 102, no. A4, pp. 7461–7467. DOI: https://doi.org/10.1029/97JA00037

11. HYSELL, D. L., KELLEY, M. C., YAMPOLSKI, Y. M., BELEY, V. S., KOLOSKOV, A. V., PONOMARENKO, P. V. and TYRNOV, O. F., 1996. HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res., vol. 101, no. A12, pp. 26981–26993.

12. YAMPOLSKI, Y. M., 1989. Echo-scattering HF signals on the artificial ionospheric turbulence. Proceedings of the universities. Radiophysics, no. 6, pp. 457–461 (in Russian).

13. KOLOSKOV, A. V., LEYSER, T. B., YAMPOLSKI, Yu. M. and BELEY, V. S., 2002. HF pump-induced large scale radial drift of small scale magnetic field-aligned density striations. J. Geophys. Res., vol. 107, no. A7, pp. SIA 1-1 – SIA 1-10.

14. ZALIZOVSKI, A. V., KASCHEEV, S. B., YAMPOLSKI, YU. M., GALUSHKO, V. G., BELEY, V. S., ISHAM, B., RIETVELD, M. T., BREKKE, A., BLAGOVESHENSKAYA, N. F. and KORNIENKO, V. A., 2004. Spectral Features of HF Signals from the EISCAT Heating Facility in Europe and in Antarctica. Radio Phys. Radio Astron., vol. 9, no. 3, pp. 261-273 (in Russian).

15. GALUSHKO, V. G., KOLOSKOV, A. V., PAZNUKHOV, V. V., REINISCH, B. W., SALES, G. S., YAMPOLSKI, Y. M. and ZALIZOVSKY, A. V., 2008. Self-Scattering of the HF Heater Emissions Observed at Geographically Dispersed Receiving Sites. IEEE Antennas Propag. Mag., vol. 50, no. 6, pp. 155–161. DOI: https://doi.org/10.1029/2012RS005072

16. GALUSHKO, V.G., RABINOVICH, L., YAMPOLSKY, Y. M., 1981. Measuring complex for research of fluctuations HF radio: Prepr. / IRE AN USSR; no. 182. Kharkov: 16 p. (in Russian).

17. KASHCHEYEV, A. S., KASHCHEYEV, S. B., KOLOSKOV, A. V., PIKULIK, I. I., BRYUKHOVETSKI, A. S. and YAMPOLSKI YU. M., 2003. Bistatic HF Scattering from the Sea Surface. II. Experiment. Radio Phys. Radio Astron., vol. 8, no. 3, pp. 241-252 (in Russian).

18. PIKULIK, I., KASHCHEYEV, S., GALUSHKO, V. and YAMPOLSKY, YU., 2003. HF-receiver Equipment for Frequency-and-Angular Sounding of the Ionosphere in Antarctica. Ukrainian Antarctic Journal, no.1, pp. 61-69 (in Russian).

19. KOLOSKOV, A. V., GALUSHKO, V. G., KASHCHEEV, A., KULIK, I. I., YAMPOLSKY, Y. M., BELEY, V. S. andBREKKE, A., 2007. Automated receiving HF system for remote ionospheric observations in the Arctic, tests and prospects. 7 Ukrainian Conference on Space Research. Abstracts. Crimea, Yevpatoria, NTSUVKZ. pp. 80.

20. Website of the Division of Radiophysics Geospace RI NASU. observations. [online]<http://geospace.com.ua/data.html>

21. Winradio Communications company website. Description digital receiver module WR G-313i. [online] <http://www.winradio.com/home/g313i.htm>

22. Site of Isotemp Research inc. Technical characteristics of the oscillator TCXO 131-1000. [online] <http://www.isotemp.com/wp-content/uploads/2011/10/131-1000.pdf>

23. GALUSHKO, V. G., KASCHEEV, A. S., KASCHEEV, S. B., PIKULIK, I. I. and YAMPOLSKY, YU. M., 2014. A Portable Hf Receiving Complex For Freguency-and-Angular Sounding Of The Ionosphere. Radio Phys. Radio Astron., vol. 19,  no. 2,  pp. 142-150 (in Russian).

24. The site of the international reference model of the ionosphereIRI. [online] <http://iri.gsfc.nasa.gov/>

25. ZALIZOVSKI, A. V., 2012. Seasonal-diurnal variations in pulse-frequency characteristics of the signals on the long-distance radio links // Electromagnetic methods for studying the surrounding area [CD disk]. Book of abstracts. rep. The first Ukrainian conference. Kharkov, pp. 76.

26. BERNHARDT, P. A., SELCHER, C. A., LEHMBERG, R. H., RODRIGUEZ, S., THOMASON, J., McCARRICK, M. and FRAZER, G. 2009. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines. Ann. Geophys., vol. 27, no. 12, pp. 4409–4427. DOI: https://doi.org/10.5194/angeo-27-4409-2009

27. BIBLE, K. and REINISCH, B. W., 1978. Universal digital ionosonde. Radio Sci., vol. 13, no. 3, pp. 519–530. DOI: https://doi.org/10.1029/RS013i003p00519

 

 

 


Keywords


Internet control; long-distance radio-wave propagation; Doppler translation; impulse selection; ionospheric turbulence; Brillouin dispersion

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)