SENSITIVITY OF ACTIVE PHASED ANTENNA ARRAY ELEMENT OF GURT RADIO TELESCOPE

DOI: https://doi.org/10.15407/rpra21.01.048

P. L. Tokarsky, A. A. Konovalenko, S. N. Yerin, I. N. Bubnov

Abstract


PACS number: 84.40.Ba

Purpose: theoretical and experimental investigations of sensitivity by the signal-to-noise ratio criterion active antenna used as a phased array element of the GURT radio telescope of new generation.

Design/methodology/approach: A mathematical model of active antenna is proposed, the technique of its application for calculation of the active phased array element sensitivity being described.

Findings: Numerical and experimental studies of the temperatures of external and internal noises at the active phased array element output of the GURT radio telescope are carried out, as well as element sensitivity estimated over a wide frequency range from 10 to 80 MHz.

Conclusions: The obtained agreement between the results of computation and experiment points to correctness of the proposed technique of calculating the sensitivity of active antennas, and the results of studies of the phased array element confirm the possibility of its effective use in construction of the antenna system for the GURT radio telescope.

Key words: radio telescope, phased antenna array, active antenna, signal-to-noise ratio

Manuscript submitted 15.02.2016

Radio phys. radio astron. 2016, 21(1): 48-57


REFERENCES

1. KRAUS, J. D., 1966. Radio Astronomy. New York, USA: McGraw-Hill.

2. DE VOS, M., GUNST, A. W. and NIJBOER, R., 2009. The LOFAR Telescope: System Architecture and Signal Processing. IEEE Proc. vol. 97, is. 8, pp. 1431–1437. DOI: https://doi.org/10.1109/JPROC.2009.2020509

3. ELLINGSON, S.,W., CLARKE, T. E., COHEN, A., CRAIG, J., KASSIM, N. E., PIHLSTROM, Y., RICKARD, L. J. and TAYLOR, G. B., 2009. The Long Wavelength Array. IEEE Proc. vol. 97, is. 8, pp. 1421–1430. DOI: https://doi.org/10.1109/JPROC.2009.2015683

4. ZARKA, P., TAGGER, M., DENIS, L., GIRARD, J. N., KONOVALENKO, A., ATEMKENG, M., ARNAUD, M., AZARIAN, S., BARSUGLIA, M., BONAFEDE, A., BOONE, F., BOSMA, A., BOYER, R., BRANCHESI, M., BRIAND, C., CECCONI, B., CÉLESTIN, S., CHARRIER, D., CHASSANDE-MOTTIN, E., COFFRE, A., COGNARD, I., COMBES, F., CORBEL, S., COURTE, C., DABBECH, A.,. DAIBOO, S, DALLIER, R., DUMEZ-VIOU, C., EL KORSO, M. N., FALGARONE, E., FALKOVYCH, I., FERRARI, A., FERRARI, C., FERRIÈRE, K., FEVOTTE, C., FIALKOV, A., FULLEKRUG, M., GÉRARD E., GRIEßMEIER, J.-M., GUIDERDONI, B., GUILLEMOT, L., HESSELS, J.,. KOOPMANS, L, KONDRATIEV, V., LAMY, L., LANZ, T., LARZABAL, P., LEHNERT, M., LEVRIER, F., LOH, A., MACARIO, G., MAINTOUX, J.-J., MARTIN, L., MARY, D., MASSON, S., MIVILLE-DESCHENES, M.-A., OBEROI, D., PANCHENKO, M., PANDEY-POMMIER, M., PETITEAU, A., PINÇON, J.-L., REVENU, B., RIBLE, F., RICHARD, C., RUCKER, H. O., SALOMÉ, P., SEMELIN, B., SERYLAK, M., SMIRNOV, O., STAPPERS, B., TAFFOUREAU, C., TASSE, C., THEUREAU, G., TOKARSKY, P., TORCHINSKY S., ULYANOV, O., VAN DRIEL, W., VASYLIEVA, I., VAUBAILLON, J., VAZZA, F., VERGANI, S., WAS M., WEBER, R. and ZAKHARENKO V., 2015. NenuFAR: Instrument Description and Science Case. In: 10th International Conference on Antenna Theory and Techniques Proceedings. 21– 24 April 2015,Kharkiv,Ukraine, pp. 13–18. DOI: https://doi.org/10.1109/ICATT.2015.7136773

5. KONOVALENKO A. A., FALKOVICH I. S., GRIDIN A. A., TOKARSKY P. L. and YERIN S. N., 2012. UWB Active Antenna Array for Low Frequency Radio Astronomy. In: 6th International Conference on Ultrawideband and Ultrashort Impulse Signals Conference Proceedings. 17–21 Sept. 2012, Sevastopol, Ukraine, pp. 39–43. DOI: https://doi.org/10.1109/UWBUSIS.2012.6379725

6. IVASHINA M. V., MAASKANT R. and WOESTENBURG B., 2008. Equivalent System Representation to Model the Beam Sensitivity of Receiving Antenna Arrays. IEEE Antennas Wireless Propag. Lett. vol. 7, pp. 733–737. DOI: https://doi.org/10.1109/LAWP.2008.2006917

7. WIJNHOLDS S. J. and VAN CAPPELLEN W. A., 2011. Insitu antenna performance evaluation of the LOFAR phased array radio telescope. IEEE Trans. Antennas Propag. vol. 59, no. 6, pp. 1981–1989. DOI: https://doi.org/10.1109/TAP.2011.2122225

8. ELLINGSON, S. W., 2011. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy. IEEE Trans. Antennas Propag. vol. 59, no. 6, pp. 1855–1863. DOI: https://doi.org/10.1109/TAP.2011.2122230

9.SAZONOV, D. M., 2015. Multielement antenna systems. The matrix approach. Moscow: Radiotechnika-Press Publ. (in Russian).

10. TOKARSKY, P. L., 2006. Matrix Model of a Dissipative Antenna Array. Radiotekhnika. All-Ukr. Sci. Interdep. Mag. is. 146, pp. 156–170 (in Russian).

11. RAZEVIG, B. D. (ed.), POTAPOV, Yu. V. and KURUSHIN, A. A., 2003. Design of microwave devices using Microwave Office. Moskow: SOLON-Press Publ. (in Russian).

12. BABAK, L. I., 1980. Determination of microwave circuits noise characteristics. Radiotekhnika i Elektronika. vol. 25, no. 11, pp. 2380–2384 (in Russian).

13. KRYMKIN, V. V., 1971. The spectrum of background lowfrequencyradio emission. Radiophysics and Quantum Electronics. vol. 14, is. 2, pp. 161–164. DOI: https://doi.org/10.1007/BF01031395

14. MARKOV, G. T. and SAZONOV, D. M., 1975. Aerials, 2nd ed., Moscow: Energiya Publ. (in Russian).

15. 4nec2 – NEC based antenna modeler and optimizer by Arie Voors [online]. Available from: http://www.qsl.net/4nec2/


Keywords


radio telescope; phased antenna array; active antenna; signal-to-noise ratio

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)