ATMOSPHERIC-SEISMIC EFFECT OF CHELYABINSK METEOROID

DOI: https://doi.org/10.15407/rpra22.02.123

L. F. Chernogor

Abstract


PACS numbers: 94.20.-y,
96.30.Ys 

Purpose: The parameters of the shock-wave source in the atmosphere and seismic oscillations that this source caused are investigated

Design/methodology/approach: The atmospheric and seismic processes caused by the passage and explosion of Chelyabinsk meteoroid on February 15, 2013 have been modelled. The model results are compared with the observation results obtained at several seismic stations.

Findings: The shock-wave impact duration is shown to be equal to approximately 97 s, and the time delays of the shockwave at the sites of destruction relative to its generation time at altitudes of 23÷53 km are shown to be equal to 77÷295 s in the distance range interval of 23÷84 km. The length of the area destructed by the shock with the access pressure of no less than 0.7 kPa is determined to be equal to 125÷130 km, and its width to 16÷60 km at various parts of the meteoroid path. The regression relation between the duration of the seismic signal and the length of the seismic wave path has been determined. The characteristic scale time of seismic source impact is equal to approximately 40 s. In the 20÷50 -s period range of seismic oscillations, the dependence of the group speed on period is established. The attenuation depth of seismic waves is estimated to be approximately 10÷20 Mm in the frequency range of 0.25÷3.0 Hz, and the Earth’s crust speed to 5.7÷7.0  μm/s.

Conclusions: The model and estimation results are in good agreement with the observations.

Key words: seismograms; seismic wave speed; trace length in the atmosphere; propagation time; destruction area parameters; seismic signal parameters; seismic signal duration, speed and attenuation rate; Earth’s crust amplitude and wave motion; earthquake magnitude and energy

Manuscript submitted 13.12.2016

Radio phys. radio astron. 2017, 22(2): 123-137

REFERENCES

1. ALEKSEEV, V. A., ed. 2013. Proceedings of the international scientific-practical conference "Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul". Chelyabinsk, Russia: Krai Ra Publ. (in Russian).

2. ALPATOV, V. V., BUROV, V. N., VAGIN, J. P., GALKIN, K. A., GIVISHVILI, G. V., GLUHOV, J. V., DAVIDENKO, D. V., ZUBACHEV, D. S., IVANOV, V. N., KARHOV, A. N., KOLOMIN, M. V., KORSHUNOV, V. A., LAPSHIN, V. B., LESHENKO, L. N., LYSENKO, D. A., MINLIGAREEV, V. T., MOROZOVA, M. A., PERMINOVA, E. S., PORTNYAGIN, J. I., RUSAKOV, J. S., STAL, N. L., SYROESHKIN, A. V., TERTYSHNIKOV, A. V., TULINOV, G. F., CHICHAEVA, M. A., CHUDNOVSKY, V. S. and SHTYRKOV, A. Y., 2013. Geophysical conditions at the explosion of the Chelyabinsk  Chebarkulsky) meteoroid in February 15, 2013. Moscow, Russia: FGBU "IPG" Publ. (in Russian).

3. GRIGORYAN, S. S., IBODOV, F. S. and IBADOV, S. I., 2013. Physical mechanism of Chelyabinsk superbolide explosion. Sol. Syst. Res. vol. 47, no. 4, pp. 268–274. DOI:https://doi.org/10.1134/S0038094613040151

4. SOLAR SYSTEM RESEARCH. 2013. vol. 47, no. 4. (Thematical issue).

5. ANTIPIN, N. A., ed. 2014. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ. (in Russian).

6. EMEL'YANENKO, V. V., POPOVA, O. P., CHUGAI, N. N., SHELYAKOV, M. A., PAKHOMOV, YU. V., SHUSTOV, B. M., SHUVALOV, V. V., BIRYUKOV, E. E., RYBNOV, YU. S., MAROV, M. YA., RYKHLOVA, L. V., NAROENKOV, S. A., KARTASHOVA, A. P., KHARLAMOV, V. A. and TRUBETSKAYA, I. A., 2013. Astronomical and physical aspects of Chelyabinsk event (February 15, 2013). Sol. Syst. Res. vol. 47, is. 4, pp. 240–254. DOI:https://doi.org/10.1134/S0038094613040114

7. POPOVA, O. P., SHUVALOV, V. V., RYBNOV, Y. S., HARLAMOV, V. A., GLAZACHEV, D. O., EMELIANENKO, V. V., KARTASHOVA, A. P. and JENNISKENS, P., 2013. Chelyabinsk meteoroid parameters: Data analysis. In: Dinamicheskie protsessy v geosferah: sb. nauch. tr. IDG RAN. Moscow, Russia: Geos Publ. is. 4, pp. 10–21 (in Russian).

8. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITTKOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. vol. 342, is. 6162, pp. 1069–1073. DOI:https://doi.org/10.1126/science.1242642

9. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITTKOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science [online]. vol. 342. [viewed 30 January 2017]. Available from: www.sciencemag.org/cgi/content/full/science.1242642/DC1

10. CHERNOGOR, L. F. and ROZUMENKO, V. T., 2013. The physical effects associated with Chelyabinsk meteorite's passage. Probl. Atom. Sci. Technol. vol. 86, no. 4, pp. 136–139.

11. CHERNOGOR, L. F., 2013. The main physical effects associated with the Chelyabinsk bolide passage. In: Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul: Proceedings of the international scientific-practical conference. Chelyabinsk, Russia: Krai Ra Publ., pp. 148–152 (in Russian)

12. CHERNOGOR, L. F., 2013. Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaya fizika. no. 8, pp. 23–40 (in Russian).

13. CHERNOGOR, L. F. and GARMASH, K. P., 2013. Disturbances in Geospace Associated with the Chelyabinsk Meteorite Passage. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 231–243 (in Russian).

14. CHERNOGOR, L. F., 2013. Large-scale disturbances in the Earth's magnetic field associated with the Chelyabinsk meteorite. Radiofizika i elektronika. vol. 4 (18), no. 3, pp. 47–54 (in Russian).

15. CHERNOGOR, L. F., MILOVANOV, YU. B., FEDORENKO, V. N. and TSYMBAL, A. M., 2013. Satellite observations of the ionospheric disturbances followed by the fall of Chelyabinsk meteorite. Kosmіchna nauka і tekhnologіya. vol. 19, no. 6, pp. 38–46 (in Russian).

16. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, no. 3, pp. 126–136. DOI: 10.3103/0884591314030039

17. CHERNOGOR, L. F., 2014. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. vol. 54, no. 5, pp. 613–624. DOI:https://doi.org/10.1134/S001679321405003X

18. CHERNOGOR, L. F., 2015. Ionospheric effects of Chelyabinsk meteoroid. Geomagn. Aeron. vol. 55, no. 3, pp. 353–368. DOI:https://doi.org/10.1134/S0016793215030044

19. POPOVA, O. P., SHUVALOV, V. V., RYBNOV, Y. S., KHARLAMOV, V. A., GLAZACHEV, D. O., EMELYANENKO, V. V., KARTASHOVA, A. P. and JENNISKENS, P., 2014. Chelyabinsk meteoroid: data analysis. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 364–376 (in Russian).

20. CHERNOGOR, L. F., 2014. Main effects of Chelyabinsk meteorite falling: physics and mathematics calculation results. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 229–264 (in Russian).

21. BEN-MENAHEM, A., 1975. Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations. Phys. Earth Planet. Inter. vol. 11, is. 1, pp. 1–35. DOI:https://doi.org/10.1016/0031-9201(75)90072-2

22. REVELLE, D. O., 1976. On meteor-generated infrasound. J. Geophys. Res. vol. 81, pp. 1217–1231. DOI:https://doi.org/10.1029/JA081i007p01217

23. ANGLIN, F. M. and HADDON, R. A. W., 1987. Meteoroid sonic shock-wave generated seismic signals observed at a seismic array. Nature. vol. 328., no. 6131, pp. 607–609. DOI:https://doi.org/10.1038/328607a0

24. BROWN, P., REVELLE, D. O., TAGLIAFERRI, E. and HILDEBRAND, A. R., 2002. An Entry Model for the Tagish Lake Fireball Using Seismic, Satellite and Infrasound Records. Meteorit. Planet. Sci. vol. 37, is. 5, pp. 661–675. DOI: https://doi.org/10.1111/j.1945-5100.2002.tb00846.x

25. EDWARDS, W., EATON, D. and BROWN, P., 2008. Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. vol. 46, is. 4, id. RG4007. DOI:https://doi.org/10.1029/2007RG000253

26. TAUZIN, B., DEBAYLE, E., QUANTIN, C. and COLTICE N., 2013. Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor. Geophys. Res. Lett. vol. 40, pp. 3522–3526. DOI:https://doi.org/10.1002/grl.50683

27. SELEZNEV, V. S., LISEIKIN, A. V., EMANOV, A. A. and BELINSKAYA, A. YU., 2013. The Chelyabinsk meteoroid: A seismologist's view. Doklady Earth Sciences. vol. 452, is. 1, pp. 976–978. DOI:https://doi.org/10.1134/S1028334X13090195

28. SELEZNEV, V. S., LISEIKIN, A. V., EMANOV, A. A. and BELINSKAYA, A. YU., 2014. Meteoroid "Chelyabinsk" (The view of seismologist). In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 678–682 (in Russian).

29. SEISMOGRAMM OF THE METEORITE EXPLOSION OVER CHELYABINSK REGION FEBRUARY 15, 2013 NEAR EMANZHELINSK, 2014. [online] Avaible from: http://pts.mi-perm.ru/region/korkino_meteor.htm

30. BERNGARDT, O. I., DOBRYNINA, A. A., ZHEREBTSOV, G. A., MIKHALEV, A. V., PEREVALOVA, N. P., RATOVSKII, K. G., RAKHMATULIN, R. A., SAN'KOV, V. A. and SOROKIN, A. G., 2013. Geophysical phenomena accompanying the Chelyabinsk meteoroid impact. Doklady Earth Sciences. vol. 452, is. 1, pp. 945–947. DOI:https://doi.org/10.1134/S1028334X13090080

31. DOBRYNINA, A. A., SAN'KOV, V. A., CHECHELNITSKY, V. V. and CHERNYKH, E. N., 2014. Seismic effects of Chelyabinsk meteoroid. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 668–677 (in Russian).

32. DOBRYNINA, A. A., CHECHELNITSKY, V. V., CHERNYKH, E. N. and SAN'KOV, V. A., 2014. Chelyabinsk meteoroid: seismic effects. NNC RC Bulletin. is. 2., pp. 105–109 (in Russian).

33. DOBRYNINA, A. A., CHECHELNITSKY, V. V., CHERNYKH, E. N. and SAN'KOV, V. A., 2014. Chelyabinsk meteoroid: seismological observations. In: Geophys. Res. Abstr. vol. 16, id. EGU2014-1889.

34. THE UNITED STATES GEOLOGICAL SURVEY EARTHQUAKE HAZARDS PROGRAM, 2017. Latest Earthquakes [online]. [viewed 16 March 2017]. Available from: http://earthquake.usgs.gov/earthquakes/eventpage/ usc000f7rz#general_summary

35. CHERNOGOR L. F., 2015. Seismic Effects of Chelyabinsk Meteoroid. 15th Ukrainian conference on space research abstracts. Odesa, Ukraine. 24– 28 August 2015. Kyiv, pp. 150 (in Russian).

36. RITZWOLLER, M. H. and LEVSHIN, A. L., 1998. Eurasian Surface Wave Tomography: Group Velocities. J. Geophys. Res. vol. 103, no. B3., pp. 4839–4878. DOI:https://doi.org/10.1029/97JB02622

37. SADOVSKY, M. A., BOLHOVITINOV, L. G. and PISARENKO, V. F., 1987. Deformation of Geophysical Environment and Seismic Process. Moscow, USSR: Nauka Publ. (in Russian).

38. PASECHNIK, N. P., 1970. Characteristics of Seismic Waves from Nuclear Explosions and Earthquakes. Moscow, USSR: Nauka Publ. (in Russian).

39. IONOV, G. V., 2014. Evaluation the trajectory of Chelyabinsk bolide through the car DVR records and simulation of the fragment motion in the atmosphere. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ. pp. 155–170 (in Russian).

40. LANDAU, L. D. and LIFSHITZ, E. M., 1970. Theory of Elasticity. London; New York: Pergamon Press.

41. RYBNOV, Y. S., POPOVA, O. P., HARLAMOV, V. A, SOLOVIEV, A. V., RUSAKOV, Y. S., GLUKHOV, A. G., SILBER, E., PODOBNAYA, E. D. and SURKOVA, D. V., 2013. Energy estimation of Chelyabinsk bolide using infrasound measurements. In: Dinamicheskie protsessy v geosferah: Sb. nauch. tr. IDG RAN. Moscow, Russia: Geos Publ. is. 4, pp. 21–32 (in Russian).

42. LANGSTON, C. A., 2004. Seismic ground motions from a bolide shock wave. J. Geophys. Res. vol. 109, is. B12, id. B12309. DOI:https://doi.org/10.1029/2004JB003167

43. BRONSTEN, V. A., 1983. Physics of Meteoric Phenomena. Dordrecht, Holland: D. Reidel Publ. Co. 


Keywords


seismograms; seismic wave speed; trace length in the atmosphere; propagation time; destruction area parameters; seismic signal parameters; seismic signal duration, speed and attenuation rate; Earth’s crust amplitude and wave motion; earthquake magnitude a

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)