CREATING THE RT-32 RADIO TELESCOPE ON THE BASIC OF MARK-4B ANTENNA SYSTEM. 2. ESTIMATION OF THE POSSIBILITY FOR MAKING SPECTRAL OBSERVATIONS OF RADIO ASTRONOMICAL OBJECTS

DOI: https://doi.org/10.15407/rpra24.03.163

A. V. Antyufeyev, A. M. Korolev, O. M. Patoka, V. M. Shulga, O. M. Ulyanov, O. M. Reznichenko, V. V. Zakharenko, V. I. Prisiazhnii, A. V. Poichalo, V. V. Voityuk, V. N. Mamarev, V. V. Ozhinskii, V. P. Vlasenko, V. M. Chmil, V. I. Lebed, M. I. Palamar, A. V. Chaikovskii, Yu. V. Pasternak, M. A. Strembitskii, M. P. Natarov, S. O. Steshenko, V. V. Glamazdyn, A. S. Shubny, A. A. Kirilenko, D. Y. Kulik, A. M. Pylypenko

Abstract


PACS number: 95.55.-Jz

Purpose: Technical capabilities of the MARK-4B antenna system necessary for its further using as a 32-meter radiotelescope (RT-32) and making simultaneous spectral radioastronomical observations in the C and K frequency ranges, are investigated.

Design/methodology/approach:The studies use the results of our own measurements made with the МАRK-4В antenna system, expert reviews, open information sources, technical documentation of the MARK-4B antenna system, radio astronomy and computer simulation methods and comparative analysis of this antenna main parameters with the corresponding parameters of the world’s best active radio telescopes. Combining different approaches allows us to determine the requirements for the receiving system, parameters of the spectrometer, calibration techniques and optimize the МАRK-4В antenna system modernization procedure.

Findings: The radio telescope main parameters required for spectral observations in the C and K frequency ranges are determined. The antenna pointing system capabilities are specified. For the MARK-4B antenna system working frequency range, the main spectral lines of various molecules available for research have been considered. The transitions radiating the most intensive spectral lines are listed. The radio astronomical problems that can be solved using the MARK-4B in the mode of spectral observations are formulated. The required parameters of the spectrum analyzer and the receiver’s self-noise temperature are determined. Calibration techniques of the recorded signal are described, which are necessary for carrying out spectral observations.

Conclusions: The here presented studies show that for making spectral observations based on the beam-waveguide MARK-4B antenna system, it is technically possible to create the RT-32 radio telescope with quality technical characteristics corresponding to the world-best analogs. Modernization of the beamwaveguide MARK-4B antenna system will allow at the first stage to create in Ukraine the dual-band radio-telescope permitting to make simultaneous spectral and/or continued observations in the C and K ranges. Henceforth, the amount of simultaneously working ranges can be increased.

Key words: antenna, calibration, masers, MARK-4B, receiving system, polarization, radio source, radio telescope, spectrum analyzer

Manuscript submitted 18.07.2019

Radio phys. radio astron. 2019, 24(3): 163-183


REFERENCES

1. LEMLEY, C. and CASTELAZ, M. W., 2014. Design and Construction of a New 1420 MHz Receiver System for a 12-meter Radio Telescope. In: American Astronomical Society Meeting Abstracts. vol. 223, id. 148.29.

2. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2017. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. vol. 54, is. 6, pp. 42–53. DOI: https://doi.org/10.1515/lpts-2017-0040

3. WOODBURN, L., NATUSCH, T., WESTON, S., THOMASSON, P., GODWIN, M., GRANET, C. and GULYAEV, S., 2015. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust. vol. 32, id. e017. DOI: https://doi.org/10.1017/pasa.2015.13

4. YONEKURA, Y., SAITO, Y., SUGIYAMA, K., SOON, K. L., MOMOSE, M., YOKOSAWA, M., OGAWA, H., KIMURA, K., ABE, Y., NISHIMURA, A., HASEGAWA, Y., FUJISAWA, K., OHYAMA, T., KONO, Y., MIYAMOTO, Y., SAWADA-SATOH, S., KOBAYASHI, H., KAWAGUCHI, N., HONMA, M., SHIBATA, K. M., SATO, K., UENO, Y., JIKE, T., TAMURA, Y., HIROTA, T., MIYAZAKI, A., NIINUMA, K., SORAI, K., TAKABA, H., HACHISUKA, K., KONDO, T., SEKIDO, M., MURATA, Y., NAKAI, N. and OMODAKA, T., 2016. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn. vol. 68, is. 5, id. 74. DOI: https://doi.org/10.1093/pasj/psw045

5. DUAH ASABERE, B., GAYLARD, M., HORELLOU, C., WINKLER, H. and JARRETT, T., 2015. Radio astronomy in Africa: the case of Ghana. arXiv e-prints. arXiv:1503.08850 [astro-ph.IM].

6. COPLEY, C. J., THONDIKULAM, V., LOOTS, A., BANGANI, S., CLOETE, K., COMBRINCK, L., GIOIO, S., LUDICK, J., NICOLSON, G., POLLAK, A. W., PRETORIUS, P., QUICK, J. F. H., TAYLOR, G., EBRAHIM, F., HUMPHREYS, C., MAAKE, K., MAGANANE, R., MAJINJIVA, R., MAPUNDA, A., MANZINI, M., MOGAKWE, N., MOSEKI, A., QWABE, N., ROYI, N., ROSIE, K., SMITH, J., SCHIETEKAT, S., TORUVANDA, O., TONG, C., VAN NIEKERK, B., WALBRUGH, W. and ZEEMAN, W., 2016. The African Very Long Baseline Interferometry Network: The Ghana Antenna Conversion. arXiv e-prints. arXiv:1608.02187 [astro-ph.IM].

7. LOOTS, A., 2015. The African VLBI network project. In: American Astronomical Society Meeting Abstracts. vol. 225, id. 126.02.

8. ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK, V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y., KONOVALENKO, A. A., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. Modernization Project and First Results. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 87–116. DOI: https://doi.org/10.15407/rpra24.02.087

9. NOVOSYADLYJ, B., SERGIJENKO, O. and SHULGA, V. M., 2017. Molecules in the early universe. Kinemat. Phys. Celest. Bodies. vol. 33, is. 6, pp. 255–264.
DOI: https://doi.org/10.3103/S088459131706006X

10. BORKOWSKI, K. M., 1987. Near Zenith Tracking Limits for Altitude-Azimuth Telescopes. Acta Astronomica. vol. 37, is. 1, pp. 79–88.

11. PESTALOZZI, M. R., MINIER, V. and BOOTH, R. S., 2005. A general catalogue of 6.7-GHz methanol masers: I. Data. Astron. Astrophys. vol. 432, no. 2, pp. 737–742. DOI: https://doi.org/10.1051/0004-6361:20035855

12. SZYMCZAK, M., WOLAK, P., BARTKIEWICZ, A. and BORKOWSKI, K. M., 2012. The Torun catalogue of 6.7 GHz methanol masers. Astronomische Nachrichten. vol. 333, is. 7, pp 634–639. DOI: https://doi.org/10.1002/asna.201211702

13. AVISON, A., QUINN, L. J., FULLER, G. A., CASWELL, J. L., GREEN, J. A., BREEN, S. L., ELLINGSEN, S. P., GRAY, M. D., PESTALOZZI, M., THOMPSON, M. A. and VORONKOV, M. A., 2016. Excited-state hydroxyl maser catalogue from the methanol multibeam survey – I. Positions and variability. Mon. Not. R. Astron. Soc. vol. 461, is. 1, pp. 136–155. DOI: https://doi.org/10.1093/mnras/stw1101

14. VALDETTARO, R., PALLA, F., BRAND, J., CESARONI, R., COMORETTO, G., DI FRANCO, S., FELLI, M., NATALE, E., PALAGI, F., PANELLA, D. and TOFANI, G., 2001. The Arcetri Catalog of H2O maser sources: Update 2000. Astron. Astrophys. vol. 368, no. 3, pp. 845–865. DOI: https://doi.org/10.1051/0004-6361:20000526

15. VENTER, M. and BOLLI, P., 2018. Electromagnetic analysis and preliminary commissioning results of the shaped dual-reflector 32-m Ghana radio telescope. IOP Conf. Ser. Mater. Sci. Eng. vol. 321, is. 1, id. 12003. DOI: https://doi.org/10.1088/1757-899X/321/1/012003

16. DEACON, R. M., CHAPMAN, J. M. and GREEN, A. J., 2004. OH Maser Observations of Likely Planetary Nebulae Precursors. Astrophys. J. Suppl. Ser. vol. 155, no. 2, pp. 595–622. DOI: https://doi.org/10.1086/425329

17. AL-MARZOUK, A. A., ARAYA, E. D., HOFNER, P., KURTZ, S., LINZ, H. and OLMI, L., 2012. Discovery of 6.035 GHz Hydroxyl Maser Flares in IRAS 18566+0408. Astrophys. J. vol. 750, no. 2, id. 170. DOI: https://doi.org/10.1088/0004-637X/750/2/170

18. SZYMCZAK, M., OLECH, M., SARNIAK, R., WOLAK, P. and BARTKIEWICZ, A., 2018. Monitoring observations of 6.7 GHz methanol masers. Mon. Not. R. Astron. Soc. vol. 474, is. 1, pp. 219–253. DOI: https://doi.org/10.1093/mnras/stx2693

19. DEACON, R. M., CHAPMAN, J. M., GREEN, A. J. and SEVENSTER, M. N., 2007. H2O Maser Observations of Candidate Post-AGB Stars and Discovery of Three High-Velocity Water Sources. Astrophys. J. vol. 658, no. 2, pp. 1096–1113. DOI: https://doi.org/10.1086/511383

20. CASWELL, J. L., 2003. Spectra of OH masers at 6035 and 6030 MHz. Mon. Not. R. Astron. Soc. vol. 341, is. 2, pp. 551–568. DOI: https://doi.org/10.1046/j.1365-8711.2003.06418.x

21. BAUDRY, A., DESMURS, J. F., WILSON, T. L., and COHEN, R. J., 1997. A survey of star-forming regions in the 5 cm lines of OH. Astron. Astrophys. vol. 325, pp. 255–268.

22. GREEN, J. A., CASWELL, J. L. and MCCLURE-GRIFFITHS, N. M., 2015. Excited-state hydroxyl maser polarimetry: who ate all the рs? Mon. Not. R. Astron. Soc. vol. 451, is. 1, pp. 74–92. DOI: https://doi.org/10.1093/mnras/stv936

23. CASWELL, J. L., KRAMER, B. H. and REYNOLDS, J. E., 2011. Magnetic fields from OH maser maps at 6035 and 6030 MHz at Galactic sites 351.417+0.645 and 353.410"0.360. Mon. Not. R. Astron. Soc. vol. 414, is. 3, pp. 1914–1926. DOI: https://doi.org/10.1111/j.1365-2966.2011.18510.x

24. WINKEL, B., KRAUS, A. and BACH, U., 2012. Unbiased flux calibration methods for spectral-line radio observations. Astron. Astrophys. vol. 540, id. A140. DOI: https://doi.org/10.1051/0004-6361/201118092

25. STANIMIROVIC, S., ALTSCHULER, D., GOLDSMITH, P. and SALTER, C., 2002. Single-Dish Radio Astronomy: Techniques and Applications. In: S. STANIMIROVIC, D. ALTSCHULER, P. GOLDSMITH and C. SALTER, eds. ASP Conference Proceedings. vol. 278. San Francisco: Astronomical Society of the Pacific.

26. PARDO, J. R., CERNICHARO, J. and SERABYN, E., 2001. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. vol. 49, no. 12, pp. 1683–1694. DOI: https://doi.org/10.1109/8.982447



Keywords


antenna; calibration; masers; MARK-4B; receiving system; polarization; radio source; radio telescope; spectrum analyzer

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)