THE CRITICAL FREQUENCY OF THE IONOSPHERIC F2-LAYER AS OBTAINED FROM IONOSONDE DATA AND OBSERVATIONS OF SOLAR RADIO BURSTS

DOI: https://doi.org/10.15407/rpra27.03.203

L. O. Stanislavsky, I. M. Bubnov, S. M. Yerin, A. V. Zalizovski, V. M. Lisachenko

Abstract


Subject and Purpose. Studying the time variations shown by the critical frequencies of the ionospheric F2 layer through comparative analysis of ionosonde data and observations of type III solar radio bursts.

Methods and Methodology. In this work, two independent methods have been used for identifying critical frequencies in the ionosphere, namely that of vertical sounding and observations of type III solar radio bursts near their cut-off frequency in the ionosphere. One of the ionosondes used for vertical sounding was located near Zmiiv (Kharkiv Region), rather close to the UTR-2 radio astronomy observatory where the solar bursts were observed. The radiation from such bursts represented probe signals for transmissive sounding. The solar radiation was received with an element of a low-frequency (1 to 40 MHz) antenna array.

Results. On May 22, 2021 variations in the critical frequency f0F2 of the ionospheric F2-layer were followed between 07:00 and 17:00 UT. The value reached a maximum of 5.9 MHz at 07:45 to 08:00 UT and then decreased smoothlyto 4.9 MHz, stayіng there from 15:30 till 16:45 UT. At that time, a storm of type III solar bursts was recorded with the antenna for radio observations at 1…40 MHz, revealing a cut-off effect for the bursts. As has been found,their cut-off  frequency can be used for estimating the critical frequency f0F2 in the ionosphere.

Conclusions. The comparative analysis of solar burst observations and frequency-and-time measurements with an ionosonde has shown possibilities for evaluating the critical frequency f0F2 in the ionosphere from the data on the cut-off frequency for solar radio-frequency burst radiation.

Keywords: ionosphere, F2-layer, ionosonde measurements, radio astronomical observations, solar bursts, cut-off frequency

Manuscript submitted 21.11.2021

Radio phys. radio astron. 2022, 27(3): 203-212

REFERENCES

1. Reber, G. and Ellis, G.R.A., 1956. Cosmic radio-frequency radiation near one megacycle. J. Geophys. Res., 61(1), pp. 1-10. DOI: https://doi.org/10.1029/JZ061i001p00001

2. Reber, G., 1994. Hectometer radio astronomy. J. Roy. Astron. Soc. Can., 88(5), pp. 297-302.

3. George, M., Orchiston, W., Slee, B., Wielebinski, R., 2015. The history of early low frequency radio astronomy in Australia. 2: Tasmania. J. Astron. Hist. Her., 18(1), pp. 14-22.

4. George, M., Orchiston, W., Wielebinski, R., 2018. The history of early low frequency radio astronomy in Australia. 9: the university of Tasmania's Llanherne (Hobart airport) field station during the 1960s-1980s. J. Astron. Hist. Her., 21(1), pp. 37-64.

5. Ellis, G.R.A., 1953. F-region triple splitting. J. Atmos. Terr. Phys., 3, pp. 263-269. DOI:https://doi.org/10.1016/0021-9169(53)90126-3

6. Ellis, G.R.A., 1972.The Llanherne low frequency radio telescope. Proc. Astron. Soc. Austr., 2(2), pp. 135-137. DOI:https://doi.org/10.1017/S1323358000013242

7. Erickson, W.C., 1997. The Bruny Island Radio Spectrometer. Publ. Astron. Soc. Aust., 14(3), pp. 78-282. DOI:https://doi.org/10.1071/AS97278

8. Zalizovsky, A.V. Kashcheev, A.S., Kashcheev, S.B., Koloskov, A.V., Lisachenko, V.N., Paznukhov, V.V., Pikulik, I.I., Sopin, A.A., Yampolsky, Yu.M., 2018. Model of a portable coherent ionosonde. Space Science and Technology, 24(3), pp. 10-22 (in Russian). DOI:https://doi.org/10.15407/knit2018.03.010

9. Zhivolup T.G., Panasenko, S.V., Koloskov, O.V., Lisachenko, V.M., 2021. Joint ionosonde studies of variations in the critical frequency of the F2 ionosphere layer over Kharkiv and Troms'o during the autumn equinox under calm and turbulent conditions. Atmos. Phys. Geospace, 2(1), pp. 38-49 (in Ukrainian). DOI:https://doi.org/10.47774/phag.02.01.2021-4

10. Panasenko, S.V., Zhivolup, T.G., Kotov, D.V., Koloskov, O.V., Lisachenko, V.M., 2020. One-hour ionosonde study of variations in the critical frequency and height of the F2 ionospheric maximum at both ends of the geomagnetic tube. Atmos. Phys. Geospace,1(1), pp. 31-44 (in Ukrainian). DOI:https://doi.org/10.47774/phag.01.01.2020-3

11. Shkuratov, Y.G., Konovalenko, A.A., Zakharenko, V.V., Stanislavsky, A.A., Bannikova, E.Y., Kaydash, V.G., Stankevich, D.G., Korokhin, V.V., Vavriv, D.M., Galushko, V.G., Yerin, S.N., Bubnov, I.N., Tokarsky, P.L., Ulyanov, O.M., Stepkin, S.V., Lytvynenko, L.N., Yatskiv, Y.S., Videen, G., Zarka, P., Rucker, H.O., 2019. A twofold mission to the moon: Objectives and payloads. Acta Astronaut., 154, pp. 214-226. DOI:https://doi.org/10.1016/j.actaastro.2018.03.038

12. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grieβ-meier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C., Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11-48. DOI:https://doi.org/10.1007/s10686-016-9498-x

13. Bubnov, I.M., Konovalenko, O.O., Tokarsky, P.L., Korolev, O.M., Erin, S.M., Stanislavsky, L.O., 2021. Creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the Universe from the Moon's farside. Radio Phys. Radio Astron., 26(3), pp. 197-210 (in Ukrainian). DOI:https://doi.org/10.15407/rpra26.03.197

14. Zakharenko, V., Konovalenko, A., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Koliadin, V., Kalinichenko, N., Stanislavsky, A., Dorovskyy, V., Shepelev, V., Bubnov, I., Yerin, S., Melnik, V., Koval, A., Shevchuk, N.S., Vasylieva, I., Mylostna, K., Shevtsova, A., Skoryk, A., Kravtsov, I., Volvach, Y., Plakhov, M., Vasilenko, N., Vasylkivskyi, Y., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Ryabov, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Kvasov, G., Mukha, D., Litvinenko, G., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshyn, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum., 5(4), id. 1641010. DOI:https://doi.org/10.1142/S2251171716410105

15. Stanislavsky, L.A., Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., Yerin, S.N., 2021. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys., 21(8), id. 187. DOI:https://doi.org/10.1088/1674-4527/21/8/187

16. Bubnov, I.N., Stanislavsky, L.A., Yerin, S.N., 2021. Simultaneous observations of solar radio bursts with Ukrainian radio telescopes and by Parker Solar Probe during its encounter. In: Proc. 13th Workshop "Solar Infl uences on the Magnetosphere, Ionosphere and Atmosphere" Primorsko, Bulgaria, 13-17 Sept. 2021, pp. 14-19.

17. Mann, G., Breitling, F., Vocks, C., Aurass, H., Steinmetz, M., Strassmeier, K.G., Bisi, M.M., Fallows, R.A., Gallagher, P., Kerdraon, A., Mackinnon, A., Magdalenic, J., Rucker, H., Anderson, J., Asgekar, A., Avruch, I.M., Bell, M.E., Bentum, M.J., Bernardi, G., Best, P., Bîrzan, L., Bonafede, A., Broderick, J.W., Brüggen, M., Butcher, H.R., Ciardi, B., Corstanje, A., de Gasperin, F., de Geus, E., Deller, A., Duscha, S., Eislöffel, J., Engels, D., Falcke, H., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Grießmeier, J., Gunst, A.W., van Haarlem, M., Hassall, T.E., Heald, G., Hessels, J.W.T., Hoeft, M., Hörandel, J., Horneffer, A., Juette, E., Karastergiou, A., Klijn, W.F.A., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Kuper, G., Maat, P., Markoff, S., McFadden, R., McKay-Bukowski, D., McKean, J.P., Mulcahy, D.D., Munk, H., Nelles, A., Norden, M.J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pizzo, R., Polatidis, A.G., Rafferty, D., Reich, W., Röttgering, H., Scaife, A.M.M., Schwarz, D.J., Serylak, M., Sluman, J., Smirnov, O., Stappers, B.W., Tagger, M., Tang, Y., Tasse, C., ter Veen, S., Thoudam, S., Toribio, M.C., Vermeulen, R., van Weeren, R.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P. and Zensus, J.A., 2018. Tracking of an electron beam through the solar corona with LOFAR. Astron. Astrophys., 611, id.A57, 9 pp. DOI:https://doi.org/10.1051/0004-6361/201629017

 

 

 

 

 

 

 

 

 

 

 

 


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)